字体:大 中 小
护眼
关灯
上一页
目录
下一页
对火星轨道变化问题的最后解释 (第3/5页)
nedbytheHillstabilitycriterion:notonlydidnocloseencounterhappenduringtheintegrationperiod,butalsoalltheplanetaryorbitalelementshavebeenconfinedinanarrowregionbothintimeandfrequencydomain,thoughplanetarymotionsarestochastic.Sincethepurposeofthispaperistoexhibitandoverviewtheresultsofourlong-termnumericalintegrations,weshowtypicalexamplefiguresasevidenceoftheverylong-termstabilityofSolarsystemplanetarymotion.Forreaderswhohavemorespecificanddeeperinterestsinournumericalresults,wehavepreparedawebpage(access),whereweshowraworbitalelements,theirlow-passfilteredresults,variationofDelaunayelementsandangularmomentumdeficit,andresultsofoursimpletime–frequencyanalysisonallofourintegrations. InSection2webrieflyexplainourdynamicalmodel,numericalmethodandinitialconditionsusedinourintegrations.Section3isdevotedtoadescriptionofthequickresultsofthenumericalintegrations.Verylong-termstabilityofSolarsystemplanetarymotionisapparentbothinplanetarypositionsandorbitalelements.Aroughestimationofnumericalerrorsisalsogiven.Section4goesontoadiscussionofthelongest-termvariationofplanetaryorbitsusingalow-passfilterandincludesadiscussionofangularmomentumdeficit.InSection5,wepresentasetofnumericalintegrationsfortheouterfiveplanetsthatspans±5×1010yr.InSection6wealsodiscussthelong-termstabilityoftheplanetarymotionanditspossiblecause. 2Descriptionofthenumericalintegrations (本部分涉及比较复杂的积分计算,作者君就不贴上来了,贴上来了起点也不一定能成功显示。) 2.3Numericalmethod Weutilizeasecond-orderWisdom–Holmansymplecticmapasourmainintegrationmethod(Wisdom&HolmanKinoshita,Yoshida&Nakai1991)withaspecialstart-upproceduretoreducethetruncationerrorofanglevariables,‘warmstart’(Saha&Tremaine1992,1994). Thestepsizeforthenumericalintegrationsis8dthroughoutallintegrationsofthenineplanets(N±1,2,3),whichisabout1/11oftheorbitalperiodoftheinnermostplanet(Mercury).Asforthedeterminationofstepsize,wepartlyfollowthepreviousnumericalintegrationofallnineplanetsinSussman&Wisdom(1988,7.2d)andSaha&Tremaine(1994,225/32d).Weroundedthedecimalpartofthetheirstepsizesto8tomakethestepsizeamultipleof2inordertoreducetheaccumulationofround-offerrorinthecomputationprocesses.Inrelationtothis,Wisdom&Holman(1991)performednumericalintegrationsoftheouterfiveplanetaryorbitsusingthesymplecticmapwithastepsizeof400d,1/10.83oftheorbitalperiodofJupiter.Theirresultseemstobeaccurateenough,whichpartlyjustifiesourmethodofdeterminingthestepsize.However,sincetheeccentricityofJupiter(0.05)ismuchsmallerthanthatofMercury(0.2),weneedsomecarewhenwecomparetheseintegrationssimplyintermsofstepsizes. Intheintegrationoftheouterfiveplanets(F±),wefixedthestepsizeat400d. WeadoptGauss‘fandgfunctionsinthesymplecticmaptogetherwiththethird-orderHalleymethod(Danby1992)asasolverforKeplerequations.Thenumberofmaximumiterat
上一页
目录
下一页