死在火星上_对火星轨道变化问题的最后解释 首页

字体:      护眼 关灯

上一页 目录 下一页

   对火星轨道变化问题的最后解释 (第4/5页)

ionswesetinHalley‘smethodis15,buttheyneverreachedthemaximuminanyofourintegrations.

    Theintervalofthedataoutputis200000d(547yr)forthecalculationsofallnineplanets(N±1,2,3),andabout8000000d(21903yr)fortheintegrationoftheouterfiveplanets(F±).

    Althoughnooutputfilteringwasdonewhenthenumericalintegrationswereinprocess,weappliedalow-passfiltertotheraworbitaldataafterwehadcompletedallthecalculations.SeeSection4.1formoredetail.

    2.4Errorestimation

    2.4.1Relativeerrorsintotalenergyandangularmomentum

    Accordingtooneofthebasicpropertiesofsymplecticintegrators,whichconservethephysicallyconservativequantitieswell(totalorbitalenergyandangularmomentum),ourlong-termnumericalintegrationsseemtohavebeenperformedwithverysmallerrors.Theaveragedrelativeerrorsoftotalenergy(109)andoftotalangularmomentum(1011)haveremainednearlyconstantthroughouttheintegrationperiod(Fig.1).Thespecialstartupprocedure,warmstart,wouldhavereducedtheaveragedrelativeerrorintotalenergybyaboutoneorderofmagnitudeormore.

    RelativenumericalerrorofthetotalangularmomentumδA/A0andthetotalenergyδE/E0inournumericalintegrationsN±1,2,3,whereδEandδAaretheabsolutechangeofthetotalenergyandtotalangularmomentum,respectively,andE0andA0aretheirinitialvalues.ThehorizontalunitisGyr.

    Notethatdifferentoperatingsystems,differentmathematicallibraries,anddifferenthardwarearchitecturesresultindifferentnumericalerrors,throughthevariationsinround-offerrorhandlingandnumericalalgorithms.IntheupperpanelofFig.1,wecanrecognizethissituationinthesecularnumericalerrorinthetotalangularmomentum,whichshouldberigorouslypreserveduptomachine-εprecision.

    2.4.2Errorinplanetarylongitudes

    SincethesymplecticmapspreservetotalenergyandtotalangularmomentumofN-bodydynamicalsystemsinherentlywell,thedegreeoftheirpreservationmaynotbeagoodmeasureoftheaccuracyofnumericalintegrations,especiallyasameasureofthepositionalerrorofplanets,i.e.theerrorinplanetarylongitudes.Toestimatethenumericalerrorintheplanetarylongitudes,weperformedthefollowingprocedures.Wecomparedtheresultofourmainlong-termintegrationswithsometestintegrations,whichspanmuchshorterperiodsbutwithmuchhigheraccuracythanthemainintegrations.Forthispurpose,weperformedamuchmoreaccurateintegrationwithastepsizeof0.125d(1/64ofthemainintegrations)spanning3×105yr,startingwiththesameinitialconditionsasintheN1integration.Weconsiderthatthistestintegrationprovidesuswitha‘pseudo-true’solutionofplanetaryorbitalevolution.Next,wecomparethetestintegrationwiththemainintegration,N1.Fortheperiodof3×105yr,weseeadifferenceinmeananomaliesoftheEarthbetweenthetwointegrationsof0.52°(inthecaseoftheN1integration).Thisdifferencecanbeextrapolatedtothevalue8700°,about25rotationsofEarthafter5Gyr,sincetheerroroflongitudesincreaseslinearlywithtimeinthesymplecti
加入书签 我的书架

上一页 目录 下一页